SOME BOUNDS ON THE NUMBER OF BLOCKS IN BIB DESIGNS

D. V. S. SASTRY*
(Received : March, 1987)

Summary

The purpose of this paper is to obtain some bounds on the number of blocks in a BIB design under some parametric restrictions.
Keywords ; bounds on blocks, BIB designs.

Introduction

Kageyama [1] has shown that for B[B designs with $v=n k, b, r, k$ and λ

$$
b>v+r-1 \Leftrightarrow r \geqslant \lambda+2 k .
$$

Using such relations, Kageyama et al. [3] obtained bounds on B. In this paper the above inequality is generalised to a wider class of designs and used for obtaining bounds on b, the number of blocks.

2. Main Results

Theorem 2.1 : For a BIB design with $v=n k, b, r, k$ and λ° and some $\alpha>0$,

[^0]$$
b>a p+p-a \Leftrightarrow r \geqslant \lambda+(\alpha+1) k .
$$

Preof: From the basic relation $v r=b k$ we can write

$$
b=\frac{v r}{k}=\frac{1}{k}\{\nu r+k(\alpha v+r-\alpha)-k(\alpha v+r-\alpha)-r+r\}
$$

We can get after some algebra

$$
\dot{b}-(\alpha v+r-\alpha)=\frac{v-1}{k}\{r-\alpha k-\lambda\} .
$$

As $v=n k$, we have $(v-1, k)=1$. Since $b-(\alpha v+r-\alpha)$ is a positive quantity we have

$$
\begin{array}{ll}
& \frac{(r-\alpha k-\lambda)}{k} \geqslant 1 \\
\text { or } & r \geqslant \lambda+(\alpha+1) k
\end{array}
$$

The converse is easy to show.

Corollary 2.1: $r=\lambda+\alpha k \Rightarrow b=\alpha \nu+r-\alpha$.
Thborem 2.2 : $A B 1 B$ design with parameters $v, b, r=p \lambda+q$ where p and $q(q<\lambda)$ are integers, is a symmetric design if either $q=1$ or $q=0$. If $q=1$, the symmetric design has parameters

$$
v=b=p(p \lambda+1)+1 ; \quad r=k=(p \lambda+1), \lambda,
$$

while if $q=0$, the symmetric design has parameters

$$
v=b=p(p \lambda-1)+1, \quad r=k=p \lambda, \lambda .
$$

Proof: From the basic relation $\lambda(v-1)=r(k-1)$ and $r=p \lambda+q$ we get

$$
\nu=\frac{(p \lambda+q)(k-1)}{\lambda}+1
$$

Since $(p \lambda+q, \lambda)=1$, we have $k-1=I \lambda$ where 1 is an integer. As. $r>k$ we have

$$
p \lambda+q \geqslant 1 \dot{\lambda}+1 .
$$

Equality is attained when $q=1$ and $p=1$. Thus $r=k=p \lambda+1$ and in such a case $\nu=b=p(p \lambda+1)+1$.

If $q=0$ then $r=k=p \lambda$ and $\nu=b=p(p \dot{\lambda}-1)+1$.
Corollary 2:2: If $r \neq p \lambda+q$, then the BIB design will have the parameters

$$
v=1(p \lambda+q)+1, b, r=p \lambda+q, k=1 \lambda+1 .
$$

Theorem 2.3 : In a bIB design with $v, b, r \neq p \lambda+1 \quad k$ and

$$
\lambda, b \leqslant \frac{r^{2}}{\lambda}-\{(p-1)+2 / \lambda\} .
$$

Proof: From $r \neq p \lambda+1$ we have $r \geqslant p \lambda+2$. Also,

$$
r k-\lambda v=r-\lambda \geqslant(p-1) \lambda+2
$$

Multiplying both sides by b and simplifying (using $r>k$) we get,

$$
b \leqslant r^{2} / \lambda-\{(p-1)+2 / \lambda\} .
$$

When $p=1$ this bound is same as that in Theorem 2.1 of Kageyama et al. [3]; for all other values of p this bound is an improvement over the Kageyama [1] bound.
In the light of Theorem 2.1, we have the following
Theorem 2.4 : In a BIB design with parameters $v=n k, b, r, k$ and λ,

$$
b>\alpha \cdot v+r-\alpha \Leftrightarrow b \leqslant \frac{r(r-\alpha \overline{+1})}{\lambda} .
$$

The equality is attained if $r=\lambda+(\alpha+1) k$.
Proof: We have $r k-\lambda y=r-\lambda \geqslant(\alpha+1) k$, or

$$
\begin{aligned}
& k(r-\overline{m+1})>\lambda v \\
& r-(\lambda+1)>\lambda \cdot n
\end{aligned}
$$

Multiplying by r we have $b \leqslant \frac{r(r-\overline{\alpha+1})}{\lambda}$.
The converse is obvious and equality is attained when

$$
r=\lambda+(\alpha+1) k
$$

The above bound is superior to the one given by Theorem 2.5 of Kageyama [3] as can be seen by the following example.

Example 2.1 : Consider the BIB design with $v=18, b=102, r=17$, $k=3$ and $\lambda=2$. Applying Kageyama's bound gives $b \leqslant 127$ whereas applying the above Theorem with $\alpha=4$ yields $b<102$ which is actually attained.

Corollary 2.3 : In a resolrable design which is not affine,

$$
b \leqslant \frac{r(r-\overline{\alpha+1})}{\lambda},
$$

the equality holding if and only if $r=\lambda+(\alpha+1) k$.
Corollary 2.4.2: In a resolvable design which is not affine resolvable, if $r=\lambda+(\alpha+1) k$ then

$$
v=\frac{k(r-\overline{\alpha+1})}{\lambda}, \quad b=\frac{r(r-\overline{\alpha+1})}{\lambda} ; \quad r, k, \lambda_{0}
$$

For designs with special parameters $v, b=m t, r=\mu t, k$, and λ in the light of Theorem 2.1 we have the following

Thborbm 2.5 : In a-BIB design with parameters $v, b=m t, r=\mu t, k$ and λ,

$$
b \lll \omega+r-\alpha \leftrightarrow b \geqq\left\{m^{2} \lambda+\mu m(\dot{\alpha}+1)\right\} / \mu^{2}
$$

respectively.

SOMB BOUMDS ON THE NUMBER OF BLOCKS IN BIB DESIONS

Proof:
$b \geqq<\alpha+r-\alpha \Leftrightarrow \mu r m \underset{<}{\geqq} m^{2} \lambda+\mu m(\alpha+1)$
.or $\quad b \geqq\left\{m^{2} \lambda+\mu_{m}(\alpha+1)\right\} / \mu^{2}$
This bound is meaningful and better if we compare with Example 2.2 of Kageyama et al. [3].

Example 2.2: Consider the BIB design $v=6, b=20, r=10, k=3$ and $\lambda=4$ having $\mu=2, m=4$ and $t=5$.

In this case $\left\{m^{2} \lambda+\mu(\alpha+1) / m\right\} / \mu^{2}=20$ which is actually attained.
Shah [5] has proved that the necessary and sufficient condition for the inequality $b \geqq<v+r-1$ to hold for any BIB design is that $r \geqq \lambda+k$: However to cover a wider class of designs we have the following

Thborbm 2.6 : A necessary and sufficient condition for the inequality $b \geqq \alpha v+r-\alpha$ to hold for any BIB design is that $r \geqslant \lambda+\alpha k$.

Proof: From the proof of Theorem 2.1 we have

$$
b-(\alpha v+r-\alpha)=(v-1) k^{-1}(r-\lambda-\alpha k)
$$

from which the above theorem follows.

REFERENCES

[1] Kageyama, S. (1971): Aa improved inequality for balanced incomplete block designs. Ann. Math. Stat. 42 : 1448-9.
[2] Kageyama, S. (1973) : On the inequality for BIBD's with special parameters. Ann. Stat. 1: 204-207.
[3] Kageyama, S., Shah, S. M. and Gujarathi, C. C. (1986) : Some improved bounds on the number of blocks in BIB designs. Jour. Ind. Soc. Ag. Stat. 38 (2) : 187-92.
[4] Raghava Rao, D. (1971). Constructions and Combinatorial Problems in Design of Experiments, Wiley, New York.
[5] Shah, S. M. (1975) : On the existence of affine μ-resolvable BIBDs. In : R. P. Güpta (ed.), Applied Statistiç. North Holland Publishing Co., 289-293.

[^0]: ${ }^{2}$ Present address : A-63, Jalada, RBI Officers Quarters, Prabhadevi, Bombay-25,

