Jour. Ind. Soc. Ag. Statistics Vol. XLI, No. 2 (1989), pp. 161-165

SOME BOUNDS ON THE NUMBER OF BLOCKS IN BIB DESIGNS

D. V. S. SASTRY[•] (Received : March, 1987)

SUMMARY

The purpose of this paper is to obtain some bounds on the number of blocks in a BIB design under some parametric restrictions. *Keywords*: bounds on blocks, BIB designs.

Introduction

Kageyama [1] has shown that for BIB designs with v = nk, b, r, kand λ

 $b > v + r - 1 \Leftrightarrow r \ge \lambda + 2k$.

Using such relations, Kageyama *et al.* [3] obtained bounds on b. In this paper the above inequality is generalised to a wider class of designs and used for obtaining bounds on b, the number of blocks.

2. Main Results

THEOREM 2.1: For a BIB design with v = nk, b, r, k and λ^{*} and some $\alpha > 0$,

*Present address : A-63, Jalada, RBI Officers Quarters, Prabhadevi, Bombay-25,

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

$$b > \alpha v + r - \alpha \Leftrightarrow r \ge \lambda + (\alpha + 1) k.$$

Proof: From the basic relation vr = bk we can write

$$b = \frac{vr}{k} = \frac{1}{k} \left\{ vr + k \left(\alpha v + r - \alpha \right) - k \left(\alpha v + r - \alpha \right) - r + r \right\}$$

We can get after some algebra

$$b-(\alpha v+r-\alpha)=\frac{v-1}{k}\left\{r-\alpha k-\lambda\right\}.$$

As v = nk, we have (v - 1, k) = 1. Since $b - (\alpha v + r - \alpha)$ is a positive quantity we have

$$\frac{(r-\alpha k-\lambda)}{k} \ge 1$$

or

$$\geq \lambda + (\alpha + 1) k$$

The converse is easy to show.

COROLLARY 2.1 : $r = \lambda + \alpha k \Rightarrow b = \alpha v + r - \alpha$.

THEOREM 2.2: A BIB design with parameters v, b, $r = p \lambda + q$ where p and q ($q < \lambda$) are integers, is a symmetric design if either q = 1 or q = 0. If q = 1, the symmetric design has parameters

 $v = b = p (p \lambda + 1) + 1;$ $r = k = (p\lambda + 1), \lambda,$

while if q = 0, the symmetric design has parameters

 $v = b = p (p \lambda - 1) + 1, \qquad r = k = p \lambda, \lambda.$

Proof: From the basic relation λ (v-1) = r (k-1) and $r = p\lambda + q$ we get

$$y \equiv \frac{(p \lambda + q) (k - 1)}{\lambda} + 1,$$

162

SOME BOUNDS ON THE NUMBER OF BLOCKS IN BIB DESIGNS

Since $(p \lambda + q, \lambda) = 1$, we have $k - 1 = I \lambda$ where 1 is an integer. As r > k we have

 $p \lambda + q \ge 1\lambda + 1.$

Equality is attained when q = 1 and p = 1. Thus $r = k = p \lambda + 1$ and in such a case $v = b = p (p \lambda + 1) + 1$.

If q = 0 then $r = k = p\lambda$ and $v = b = p(p\lambda - 1) + 1$.

COROLLARY 2.2 : If $r \neq p \lambda + q$, then the BIB design will have the parameters

$$v = 1 (p \lambda + q) + 1, b, r = p \lambda + q, k = 1 \lambda + 1.$$

THEOREM 2.3 : In a BIB design with v, b, $r \neq p \lambda + 1$ k and

$$\lambda, b \leq \frac{r^{a}}{\lambda} - \left\{ (p-1) + \frac{2}{\lambda} \right\}.$$

Proof: From $r \neq p \lambda + 1$ we have $r \geq p \lambda + 2$. Also,

$$rk - \lambda v = r - \lambda > (p - 1) \lambda + 2.$$

Multiplying both sides by b and simplifying (using r > k) we get,

$$b \leq r^2/\lambda - \{(p-1) + 2/\lambda\}.$$

When p = 1 this bound is same as that in Theorem 2.1 of Kageyama *et al.* [3]; for all other values of p this bound is an improvement over the Kageyama [1] bound.

In the light of Theorem 2.1, we have the following

THEOREM 2.4 : In a BIB design with parameters v = nk, b, r, k and λ ,

$$b > \alpha v + r - \alpha \Leftrightarrow b \leqslant \frac{r(r - \alpha + 1)}{\lambda}.$$

The equality is attained if $r = \lambda + (\alpha + 1) k$.

Proof: We have
$$rk - \lambda v = r - \lambda \ge (\alpha + 1) k$$
, or

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

 $k(r-\overline{n+1}) \geqslant \lambda y$

$$r = (\lambda + 1) \geq \lambda n$$

Multiplying by r we have $b \leq \frac{r(r-\overline{\alpha+1})}{\lambda}$.

The converse is obvious and equality is attained when

 $r = \lambda + (\alpha + 1) k$.

The above bound is superior to the one given by Theorem 2.5 of Kageyama [3] as can be seen by the following example.

EXAMPLE 2.1 : Consider the BIB design with v = 18, b = 102, r = 17, k = 3 and $\lambda = 2$. Applying Kageyama's bound gives $b \le 127$ whereas applying the above Theorem with $\alpha = 4$ yields $b \le 102$ which is actually attained.

COROLLARY 2.3 : In a resolvable design which is not affine,

$$b \leq \frac{r(r-\alpha+1)}{\lambda},$$

the equality holding if and only if $r = \lambda + (\alpha + 1) k$.

COROLLARY 2.4.2: In a resolvable design which is not affine resolvable, if $r = \lambda + (\alpha + 1) k$ then

$$v = \frac{k(r-\alpha+1)}{\lambda}, \quad b = \frac{r(r-\alpha+1)}{\lambda}; \quad r, k, \lambda.$$

For designs with special parameters v, b = mt, $r = \mu t$, k, and λ in the light of Theorem 2.1 we have the following

THEOREM 2.5: In a BIB design with parameters v, b = mt, $r = \mu t$, k and λ ,

$$b \gtrsim \alpha v + r - \alpha \Leftrightarrow b \approx \{m^2 \lambda + \mu m (\alpha + 1)\}/\mu^2$$

respectively,

164

SOME BOUNDS ON THE NUMBER OF BLOCKS IN BIB DESIGNS

Proof :

$$b \stackrel{\geq}{\triangleleft} \alpha \nu + r - \alpha \Leftrightarrow \mu r m \stackrel{\geq}{\triangleleft} m^2 \lambda + \mu m (\alpha + 1)$$

or $b \stackrel{\geq}{\triangleleft} \{m^2 \lambda + \mu m (\alpha + 1)\}/\mu^2$

This bound is meaningful and better if we compare with Example 2.2 of Kageyama *et al.* [3].

EXAMPLE 2.2: Consider the BIB design v = 6, b = 20, r = 10, k = 3 and $\lambda = 4$ having $\mu = 2$, m = 4 and t = 5.

In this case $\{m^2 \ \lambda + \mu \ (\alpha + 1)/m\}/\mu^2 = 20$ which is actually attained. Shah [5] has proved that the necessary and sufficient condition for the inequality $b \stackrel{\geq}{\triangleleft} v + r - 1$ to hold for any BIB design is that $r \stackrel{\geq}{\triangleleft} \lambda + k$. However to cover a wider class of designs we have the following

THEOREM 2.6: A necessary and sufficient condition for the inequality $b \ge \alpha v + r - \alpha$ to hold for any BIB design is that $r \ge \lambda + \alpha k$.

Proof: From the proof of Theorem 2.1 we have

 $b - (\alpha v + r - \alpha) = (v - 1) k^{-1} (r - \lambda - \alpha k)$

from which the above theorem follows.

REFERENCES

- [1] Kageyama, S. (1971): An improved inequality for balanced incomplete block designs. Ann. Math. Stat. 42: 1448-9.
- [2] Kageyama, S. (1973) : On the inequality for BIBD's with special parameters. Ann. Stat. 1 : 204-207.
- [3] Kageyama, S., Shah, S. M. and Gujarathi, C. C. (1986): Some improved bounds on the number of blocks in BIB designs. Jour. Ind. Soc. Ag. Stat. 38 (2): 187-92.
- [4] Raghava Rao, D. (1971). Constructions and Combinatorial Problems in Design of Experiments, Wiley, New York.
- [5] Shah, S. M. (1975) : On the existence of affine μ—resolvable BIBDs. In: R. P. Gupta (ed.), Applied Statistics. North Holland Publishing Co., 289-293.

165